
Kris Jordan / The University of North Carolina at Chapel Hill

HTTP 101
COMP423 / 2023 Fall / CL08

HTTP Client
Web Browser

cURL
HTTP Client Libraries

and more…

HTTP Server
Web Servers

Application Servers
Reverse Proxies

and more…

How does your client-side application interact
with the server-side out on the internet?

????

Your Machine The Internet

HTTP Client HTTP Server

HTTP Protocol (Simplified)

Your Machine The Internet

Request

Response

Browser /
HTTP Library HTTP Server

HTTP Protocol

Your Machine The Internet

Request

Response

Client-side
Application

Code

Server-side
Application

Code

Scavenger Hunt
On a team board…

1. What are 4 Common Verbs or METHODS used in the HTTP protocol?

2. What about Content-type? What is the Accepts header?

An HTTP Request Has
• Request Line

• Method (GET/POST/PUT/DELETE)

• Path

• HTTP Version (e.g. HTTP/1.1)

• Headers

• Key-Value string pairs delimited by “:”s

and separated by new lines

• Body

• If the request is giving content to the

server (such as a form submission,
application “post” or “save”)

POST /tweet HTTP/1.1

Host: api.twitter.com
Content-Type: application/json
Accept: application/json
Authorization: <JWT_TOKEN>

{“message”:“Hello, World”}

A brief story about accepts headers…

Scavenger Hunt
On a team board, respond

Submit to Gradescope as group of up to 4x

1. What is the meaning of 200-level HTTP response codes? Find 2 examples.

2. What is the meaning of 300-level HTTP response codes? Find 2 examples.

3. What are the meanings of 400-level HTTP response codes?  
500-level? Find 1 example in each range.

An HTTP Response Has
• Status Line

• HTTP Version

• Status Code (e.g. 200, 404, 500)

• Reason Phrase (e.g. Ok, Not Found, Internal

Server Error)

• Headers

• Just like a request, key-value pairs delimited

by ‘:’s and separated by new lines

• Response Body

• Optional, but more common than in the client.

For example, when a web page is requested
its HTML comprises the response body.

HTTP/1.1 404 Not Found

Host: api.twitter.com
Content-Type: text/html

<!doctype html>
<html>
 <head>  
 <title>Page Not Found</title>  
 ...

HTTP Client
Library HTTP Server

HTTP Protocol for Full-stack Apps
Your Machine The Internet

Client
App Code

Server App
Code

1

Request
3

4 5

Response
7

8

1. Your app code calls out to HTTP Client Library
module. Subscribes for notification of result.

2. HTTP Client Library transforms your request to
valid HTTP protocol message, handles
connection to server, sends request.

3. HTTP Server receives request, parses it,
dispatches out to your server application code.

4. Your server application receives a function/
method call with relevant data from request.

5. Your application logic handles request and
returns info relevant to response.

6. HTTP server transforms response into valid
HTTP response, sends it back to client.

7. HTTP Client Library parses HTTP response and
notifies the subscribed client code.

8. Your client can handles the subscription
notification of response from the server.

2

6

HTTP Client
Library HTTP Server

Client
App Code

Server App
Code

1

Request
3

4 5

Response
7

8

6

2

HTTP Protocol for Full-
stack Apps

Your
Responsibilities
as a Full-stack

Developer

Notice on the client-side the request invocation and response handling are asynchronous!

This enables your application to do other things, or not block,while waiting on the server to
process a request which can take an undetermined amount of time.

This is where we are now
focusing in this unit on back-

end API development!

Group Activity: Design the Check-in API

• Given the methods: POST (create), PUT (update), GET (retrieve), and DELETE
(destroy)

• What API route paths would you implement for each Story of Check-in, if any?
Assume all API routes are prefixed with /api/

• Format: <METHOD> /api/<PATH> - Description

• e.g.: GET /api/registrations - Story C’s ability to see registered members.

Pseudo-code on Each Side
• A reasonable mental model for HTTP is that of a (remote) async function call

• Client library has mechanism for calling out with specific methods:

this.httpService.put("http://site.com/items/423", anItem)
 .pipe(catchError(this.handleError(‘updateItem’, anItem))
 .subscribe((response) => this.handleResponse(response))

• The pieces of an HTTP request are parameters to a server-side function 

@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
 ...
 return response

